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We perform an analysis of various queueing systems with an emphasis on estimating a single
performance metric. This metric is defined to be the percentage of customers whose actual waiting
time was less than their individual waiting time threshold. We label this metric the Percentage of
Satisfied Customers (PSC.) This threshold is a reflection of the customers’ expectation of a reasonable
waiting time in the system given its current state. Cases in which no system state information is available
to the customer are referred to as “hidden queues.” For such systems, the waiting time threshold is
independent of the length of the waiting line, and it is randomly drawn from a distribution of threshold
values for the customer population. The literature generally assumes that such thresholds are exponen-
tially distributed. For these cases, we derive closed form expressions for our performance metric for a
variety of possible service time distributions. We also relax this assumption for cases where service times
are exponential and derive closed form results for a large class of threshold distributions. We analyze
such queues for both single and multi-server systems. We refer to cases in which customers may observe
the length of the line as “revealed” queues.” We perform a parallel analysis for both single and
multi-server revealed queues. The chief distinction is that for these cases, customers may develop
threshold values that are dependent upon the number of customers in the system upon their arrival. The
new perspective this paper brings to the modeling of the performance of waiting line systems allows us
to rethink and suggest ways to enhance the effectiveness of various managerial options for improving
the service quality and customer satisfaction of waiting line systems. We conclude with many useful
insights on ways to improve customer satisfaction in waiting line situations that follow directly from our
analysis.
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1. Introduction

Many settings exist in which customers join a single-
channel queue with a high level of commitment to
reaching the service provider at the end of the line. For
example, we may join a queue to check in at an airport
with tickets in hand, or to receive a critical medical
treatment, or to handle a particularly pressing per-
sonal or business matter. In such settings, each cus-
tomer brings with him/her some tolerance for the
wait that is to take place. If customers are polled after
the experience and asked questions such as, ‘Was the
waiting time excessive?’, some customers will answer
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in the affirmative while others answer in the negative
even if they all experience waits of identical lengths. In
this work, we will assume that each customer brings
with him/her some threshold value (X) such that, as
long as the actual wait (W) is less than this value (W
~ X = 0), he would respond that the wait was not
excessive. For ease of exposition, we label all custom-
ers with W — X = 0 as satisfied and all customers with
W — X > 0 as dissatisfied. We label the portion of
customers for which W — X = 0 as the Percentage of
Satisfied Customers (PSC.)

A large body of literature focuses upon objective
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measurements such as average waiting time or the
likelihood of experiencing a wait. Such measurements
are most useful when compared to some benchmark.
Our approach addresses this by comparing the wait-
ing time to customer specific thresholds. While our
binary classification scheme is a dramatic simplifica-
tion of reality, our approach remains valuable for sev-
eral reasons. First, our metric provides a simple, global
measurement of system performance that can easily
be conveyed, and explained. Second, our metric gen-
erates values that may easily be verified in practice.
Data from exit surveys or other customer responses
allow us to classify customers as satisfied/not satis-
fied, while estimating the ‘degree of dissatisfaction” as
a function of the waiting time introduces measure-
ment difficulties that may be impossible to overcome.
Third, the analytical statement of our metric allows
managers to quickly estimate the impact of proposed
system changes.

1.1. Waiting Thresholds

The notion of waiting time thresholds is common in
the literature on call centers (Whitt 1999a,b). In that
setting, this value is interpreted as the time after
which a customer will hang up after being put on
hold. This behavior is often labeled ‘reneging.” In our
models, we typically assume that there is some char-
acteristic of the service that minimizes this behavior.
(The appendix does include limited results which in-
clude balking and reneging for M/M/c queues.) Our
notion of a waiting time threshold is better described
as the length of time a customer will wait, prior to the
initiation of service, before becoming dissatisfied with
the service provider. Our focus on the time prior to the
initiation of service is consistent with the arguments of
Maister (1985) who suggested that these ”pre-process”
waits are often (but not always) more unpleasant than
in-process waits. This argument is further supported
by empirical evidence (see Dube-Rioux, Schmitt, and
LeClerc 1988 and the references therein.)

In many cases, customer satisfaction (or dissatisfac-
tion) relates to the gap between customers’ expecta-
tions of the performance of the service system and its
actual performance (see Maister 1985 and Boulding et
al. 1993 for empirical support.) This implies that cus-
tomer threshold values are likely to be correlated with
their expectations. This suggests that management of
these expectations should have a significant impact on
the PSC. On the other hand, it is also clear that these
threshold values are not fully determined by customer
expectations. One may be dissatisfied with a wait even
when it is exactly as long as was expected.

1.2. Selected Literature
Most of the research on queueing has dealt with the
mathematical theory of waiting lines, and descriptions

of waiting time distributions have been developed for
virtually any setting. (For recent textbooks, see Wolff
1989; Hall 1991; Gross and Harris 1998.) Several re-
searchers have expanded this large body of work by
focusing upon customer satisfaction measures which
seek to include customer-specific attributes in their
calculation. (For examples, see Carmon et al. 1993;
Green and Kolesar 1987, 1988; Whitt 1992a,b.)

The work of Whitt (1999a,b) has been particularly
influential in this area. These papers focus upon call
centers, and all of the closed form metrics derived
assume exponentially distributed inter-arrival times,
service times, and threshold values. It is useful to have
compact expressions for the PSC for a number of
settings where we may relax at least one of these
assumptions. For example, the assumption of expo-
nential service times is not universally applicable even
for call centers (see Inman 1999). For data on non-
exponential service times in call centers, see Wardell et
al. 2001. Our analysis will consider other service time
distributions in such a way that we still obtain closed
form expressions for the PSC.

The work of Whitt is also restricted to the consider-
ation of cases in which the customer thresholds are
independent of the state of the system. This is quite
natural for call centers. We refer to such settings as
“hidden queues” because some knowledge of the sys-
tem state is hidden from the customer’s information
set. However, many cases exist in which the customer
can easily see the number of customers ahead of him/
her awaiting service. We refer to these settings as
“revealed queues.”

Common examples of hidden queues include
amusement parks where the length of the line is hid-
den by bending it around corners or using staging
areas, medical settings where some people in a wait-
ing area are accompanying customers and some cus-
tomers hold appointment slots even if they are not
present, and many electronic systems in which cus-
tomers cannot see how many jobs are ahead of them in
line. Common waiting line situations that qualify as
revealed queues include check-out areas in supermar-
kets, lines to enter unique sporting or entertainment
events, lines at licensing centers, bus stops, theaters,
etc.

2. Hidden and Revealed M/G/1

Queues
Let us consider a single-line queueing system with a
single server. Customers arrive according to a Poisson
process, and the required service time follows a gen-
eral distribution function. Upon arrival each customer
can be characterized as holding some threshold value
for waiting in the line. Each customer’s threshold will
depend on a variety of unknown, customer-specific
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Table 1 Notation Used Throughout This Work the stationary M / G / 1 queueing modell it is known
A average arrival rate of customers per unit time (see Kleinrock 1975) that
S service time random variable ( )
B service time distribution function (i.e. B = P{S = x}) N s(l-—p
M, ith moment of the service time (ie., m, = E[S’) H(s)=| e *dH(x) = ST AT ARG (2)
w  average service rate (u = 1/E[S]) 0
p  utilization factor (i.e., p = A E[S)) ) C
W stationary waiting time random variable where B(s) is the L-S transform of the service time
h (generalized) stationary waiting time density distribution function. Thus, from (1) and (2), we obtain
H  stationary waiting time distribution function (i.e., HX = P{W = x))
L number of customers in the system 0(1 - p)
X customer's waiting time threshold upon arrival to the system F(0) = 9= A+AB(9)’ (3)
G distribution function of X (e, GX = PX =< x))
n  index for number of customers in the system When X ~ Ex E :

,_ : _ p(6), we can use Equation (3) to state F(0)

robability that th e n cust s in the system (i.e., g, = P{L . .

G P o=a 'n'}t)y 6re are 1 customers in the system (., g, { for cases where the L-S transform of the service time
H, waiting time distribution function given that there are n customers ahead distribution is known, and can be evaluated at 6. Such
Y, customer's expectation of the waiting time when (s)he observes n expressions for a variety of service time distributions

customers in the system
G, distribution function of ¥,
8, Kronecker’s delta (i.e., 5,,, = 1for m = n, 0 otherwise)
Ux) step function defined by Ux) = 1if x = O0and U = Oforx < 0.

factors. We model this by having each customer ran-
domly drawing a threshold value out of a prespecified
distribution. We assume that our queue is part of a
stationary M/G/1 system. Our notation is rather stan-
dard, and is summarized in Table 1.

2.1. Hidden M/G/1 Queue With Exponential
Distribution of Customer Thresholds

We label the random variable of interest as Z, defined
as W-X. We want to calculate the distribution function
of Z, let us call it F, and in particular F(0), which
represents the probability that a randomly selected
customer is satisfied. Since we assume Poisson arriv-
als, F(0) is also the PSC. Since the randomness in X
arises from the heterogeneity of the customer popula-
tion, we assume that X and W are statistically inde-
pendent when performing our calculations. If the cus-
tomer’s expectation, X is drawn from an exponential
distribution with rate 6, then the quantity of main
interest can be expressed with the use of the following
lemma.

LemMma 1. Let I and | be independent non-negative
random variables. I has a distribution function G, and | is
exponentially distributed with rate 6. Then P{I — ] =< 0}
= Y(6), where v is the Laplace-Stieltjes (L-S) transform of
G,

See Appendix for all proofs and additional mathe-
matical details, including comments on numerical ap-
proaches for more general cases. Using Lemma 1, we
have,

F(0)=P{Z=0}=P{W-X=0}=H(0), (1)
where H is the L-S transform of H(x) = P{W < x}. For

are shown in Table 2.

A variety of service time distributions are consid-
ered because delivery systems differ so widely in their
structure. While exponential or Erlang service time
distributions are quite common in the literature, auto-
mation or process standardization often leads to ser-
vice times that are virtually deterministic. Hyperexpo-
nential service times may be present when different
classes of customers need different levels of service,
but the provider has no way of knowing which class a
customer is in until he/she reaches the service pro-
vider. A Generalized Exponential service time is
present when some portion of the population () can
be shifted to an alternate service provider or require
service times of virtually 0. Finally, the ability to

Table 2 Percentage of Satisfied Customers in Hidden Queues When X

~ Exp(6) and Service Times Follow Various Distributions

Distribution of service times Percentage of satisfied customers (F(0))

Exponential (p) 6(1 — p)
®
06—+ /\m
Gamma (e, B) 61 - p)
(BTN
0-r+ ()
Deterministic (1 — p)
X
O— A+ r;
Erlang (k) 6(1 — p)
ko \F
86— A+ A( o k.“«)
Hyperexponential (1 - p)

< i
O—A+ A ;w,(m)
6(1 - p)

n
8— A+ /\&)(m)

Generalized exponential
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model Gamma distributed service times is useful be-
cause it is a good fit for a wide range of settings not
satisfactorily captured by simpler distributions.

2.2, Hidden M/M/1 Queue With General

Distribution of Customer Thresholds
While it is common to assume that X ~ Exp(6), Lemma
1 also allows us to deduce closed form expressions for
F(0) when service times are assumed to be exponential
as long as the L-S transform of the distribution from
which customer threshold values are drawn is known.
For this setting, Lemma 1 implies that we may express
the percentage of satisfied customers as,

F(0) = (1 = p) + p(1 = G(n = 1)), (4)

where each customer’s threshold is drawn from a
distribution function G, and G(s) is its L-S transform.
Closed form expressions for F(0) for several such cases
are summarized in Table 3.

If customers are promised a’priori that the waiting
time will be some specific value, say W, then, virtu-
ally all customers will become upset if the wait is
longer than W, and the distribution of X approaches
that of a deterministic setting. The notion of hyperex-
ponential thresholds is applicable when considering a
mixture of classes of customers interspersed in the
same line. This is also useful in modeling a setting in
which a portion of the population (wy) is “impatient”
such that any wait is considered intolerable. A unique
application of the Generalized Exponential distribu-
tion exists when some fraction of the customer pool
may be distracted, entertained, or treated in such a
way that their perceived cost of waiting is 0. Increas-

Table 3 Percentage of Satisfied Customers in Hidden Queues When
Service Times ~ Exp(6) and Customer Thresholds X Follow

Various Distributions

Distribution of
customer thresholds

Percentage of
satisfied customers RQ)

Exponential o)
xponential (1) A=+ l-gr =
6 -

Gamma (v, B) A-p = p{l - (-—17@) }
Deterministi 1—-p +pl1-

ministic (1-p p( = )\))

k
Erlang (k) 1-p+ p{l <M T ke) }
Hyperexponential 1-p+ p[l ;w( = /\ T 9>]
Generalized a=p+ p<1 /\ T 0)
exponential

ing this fraction (w,) of “patient” customers obviously
leads to increases in customer satisfaction.

2.3. Revealed M/G/1 Queue

In this setting the arriving customer observes the
length of the waiting line prior to the point at which
his/her threshold value becomes fixed. The threshold
setting process is modeled as a draw from a pre-
specified distribution, the parameters of which de-
pend on the length of the line that the customer ob-
serves upon arrival. The manager of such a service
delivery system is concerned with the PSC over all
possible states of the system, and the unconditional
distribution F(x) is of primary importance. This distri-
bution may be expressed as,

n=w%

2 4nFn(2) (5)

n=0

F(x) =

In other words, the PSC must be defined by calculat-
ing the PSC given that n people are in the system (F,)
as well as the probability that n people are present
upon customer arrival (q,,.) We will deal with special
cases applying Lemmas 1 and 2 which yield closed
form results. (Other approaches to this problem for
more general cases are discussed in the appendix.)

2.3.1. The Revealed M/G/1 Model When Y,
~Exp(0). If the distribution of customer thresholds is
exponential for all states of the system, ie., Y,
~ Exp(#0,,) for all n, we can obtain closed form expres-
sions for F,(0) and F(0). Using Lemma 1, we conclude
that

F.(0) = H,(6,), (6)

where H,, is the L-S transform of H,, and is given by

A,(s) = BIOR(ES) = Bs) - B(S). @)
From (6) and (7) we have

F,(0) = B"1(0, )—%@ (8)

For this special case, it also holds that

F(0) = X 9.F,(0) = 2 4.H4(6,)
n=0 n=0
B(o,

= 2 7.8~ V(6, )—% 9

Table 4 summarizes F,(0) values for a variety of ser-
vice time distributions derived using (8). A variety of
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Table 4 Percentage of Satisfied Customers in Revealed Queues When
n Customers are in the System, Customer Thresholds Y,

~ Exp(6,) and Service Times Follow Various Distributions

Distribution of

service times Percentages of satisfied customers (F,(0))
Exponential (1/u) ( " )“
6, +
Gamma (a, B) 1 < ap )‘“" 1 < aff \“
afBf, [ \aB + 6, aB + 6,
Deterministic ( 1 )"(6,,;.L -1
no, Ot )
Erlang (K) ku/ kpo \Koo© ku \f
e_,,(en - k#) (1 B <o,. T ku) >
Hyperexponential m n=1 m
1 / ‘ i 1- i
" \wx . 6}1 + I-Lx i en + /Jq
0 Eﬁ i=1 i=1
! N
i=1
Generalized w/ op \"? ou
exponentia e,,m(e,, + u) ( s u)

sources may be used to estimate q,, values for M/G/1
queues such as the tabulated results included in many
textbooks. Thus, we can calculate F (0) directly for
many settings making it easy to calculate F(0).

2.4. The Revealed M/M/1 Model for Various
Distributions of Y,

With exponential service times we have, R(s) = B(s)

and H,(s) = B,(s) . For the special case where

Y. ~Exp(6,), we have

F,(0) = ( ) and (10)

un+ 8,

FO)= 2 1 -ppF(0)=(1-p) 2 (M”f@ ) :
n=0 n=0 K

(11)

For cases in which Y, is not exponentially distributed,
we may make use of the fact that the waiting time is
the sum of n exponential variables and solve the fol-
lowing equation

P[W-X)=0]=1-P[(X-W)=0] (12)
=1- fw F.(w)g{w)ow
0

where g(w) is the p.d.f. of an Erlang distribution with
parameters k and u. F,(w) is the c.d.f. of the threshold
X, evaluated at w. If we set 6 = ku, we may state this
quantity as

0" a"F(8)

Fn(o)zl_(n_1)| (_1)71 00"

(13)

In other words, if we know the nth derivative of the
L-S transform of the threshold distribution, we can
calculate F,(0). We then combine these values with q,,
values to calculate F(0).

2.5. M/M/1 Queues With Exponentially
Distributed Thresholds, Balking, and
Reneging Customers

Our analysis may be extended to include both balking

and reneging behavior among customers. For the spe-

cial case in which we have an M/M/1 system where
the probability of a customer balking can be stated as

a function of the length of the line (1 - b,)), we know

that the percentage of customers who balk is simply, B

=271 9,1 — b,). We label the rate at which custom-

ers renege when there are k customers in front of them
as § = E}‘:l §;. If we label the percentage of arriving
customers that do not balk or renege and are satisfied

as F'(0), we can now state that F'(0) = 2;_; 4,b,(u

+ 8/m + 28)" F,(0). (See appendix for additional

details.) We label the percentage of reneging custom-

ers as @ and state the value along with the PSC as

O = z bnqn{l - W,,((S)}, and (14)

F(O)=F'(0)(1 - B—®). (15)

3. Observations on Hidden and
Revealed M/G/1 Queues

For the case of hidden queues, we assume X ~ Exp(#).
For the case of revealed queues we assume that
Y,~Exp(6/n%), where 0 < o = 1. We focus upon this
functional form because it appears reasonable to assume
that Y,, should be both increasing and concave in n.
When a = 0 threshold levels are independent of n. We
assume that a = 1, since it seems unreasonable to as-
sume that customer thresholds would grow faster than
n. Considering the scenarios discussed in Tables 2 and 4
we derive several useful results including the following.

ProrosiTiON 1. For hidden queues when X ~ Exp(0),
or revealed queues when Y, ~Exp(8/n®) the percentage of
satisfied customers F(0) is:

(i) a non-increasing, convex function of 6 for the M/G/1
model;

(i) @ non-increasing, concave function of p for the
M/G/1 model;

(iii) a non-decreasing, concave function of k for the
M/E,/1 model; and

(iv) a non-decreasing function of (1 - w) for the
M/GE/1 model.
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Proposition 1 implies that when Y, ~ Exp(6/n?), a
shift in the mean of the distribution from which cus-
tomers’ expectations are drawn has a relatively sizable
impact on PSC. This is particularly important when 6
is low (part i) or when p is high (part ii). By increasing k
from 1 (the exponential case) toward infinity (the deter-
ministic case), we can display the impact that reducing
service time variability has on the PSC. For example,
consider the setting in which &« = 0, p = 100, 6 is
extremely small (0.00001), and p is extremely high (p
= 99.9%). Reducing service time variability has the
greatest impact in the most extreme cases, such as this
one. For this instance, changing k from 1 to infinity
increases PSC by 16.9% (from 41.7% to 58.6%). Alterna-
tively, an equivalent increase in PSC could have been
obtained by dropping p to 99.5%. In this sense, we see
that changing 6 or p has a far greater impact on PSC than
altering k. Figure 1 shows PSC values as a function of k
when pis fixed at 0.7 for various levels of a. We note that
changing o may produce a significant increase in PSC for
any value of k and that the impact of increasing k is
positive but marginal by comparison.

To understand the effects of reducing the variability of
the distribution of customer thresholds, we focus upon
the case in which expectations are drawn from an Erlang
distribution with parameter k. Consideration of our ex-
pression for PSC leads to the following result.

ProPOSITION 2. For the M/M/1 model, the percentage
of satisfied customers F(0) is:

(i) a non-decreasing, concave function of k, when X (or
Yn) -~ Ek

Figure 1

(ii) a decreasing, linear function of w; when X ~ H, (v, 0)
(iii) an increasing, linear function of (1 - w,), when X
~ GE(w,, 9).

This result is graphically depicted in Figures 2 and
3. From Figure 2, we observe that the effect of a
reduction in the variability of customer thresholds
may be realistically labeled as marginal. For this ex-
ample, a reduction from C,> = 1.0 to 0.1 leads to an
increase in the percentage of satisfied customers of
0.018. Figure 3 depicts results noted in parts ii and iii.
Part ii relates to a setting where some portion of the
customer base (w;) would best be described as impa-
tient, meaning that any wait produces dissatisfaction.
Part iii represents a setting in which the satisfaction of
a fraction of customers (1 — w,) is independent of the
waiting time. The other customers have threshold val-
ues drawn from an exponential distribution with
mean 6. In this case, the PSC rises linearly with (1
— w,), when pis held constant. A unique line exists for
each p value on Figure 3, and its slope rises as p rises.
These two sets of curves are shown together to em-
phasize the finding that when all else is equal, growth
in the ”patient” segment of the population is more
significant than an equal growth in the “impatient”
segment of the population.

Figure 4 presents the result of an analysis of an
M/M/1 system where customers balk upon finding a
system containing n customers with probability (1
— b,) and renege at a rate 8. The results shown here
compare the PSC values under several scenarios. Case
1 assumes no balking or reneging. In case 2, we con-

F (0) Vs. k for M/Er(k)/1 System With p = 0.70 and 0 = p = 100 at Various Levels of .
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Figure 2

0485

F (0) Vs. k for M/M/1 System With X ~ Er(k), 8 = u = 100, and p = 0.70.
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0475

Percentage of Satisfied Customers
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Erlang Parameter k

sider balking at a rate of 5%. This value was suggested
by research on call centers (Salzman and Merotha
2001) which found that roughly 5% of customers balk
upon being put on hold even if the average waiting
times are very short. In case 3, we consider reneging
without balking, where 8 =10, and in case 4, we treat
both forms of customer loss. The results shown in
Figure 4 indicate that balking and reneging serve to
increase PSC values relative to the base case as arrival
rates rise. Balking reduces the effective arrival rate,
and reneging makes the line move faster for the cus-
tomers that chose to endure the wait.

Figure 3

3.1. Hidden vs. Revealed Queues
Consideration of our metric for M/M/1 queues leads
to the following result.

ProPOSITION 3. For revealed M/M/1 systems with Y,
~ Exp(6/n%), and 0 = o = 1 the percentage of satisfied
customers F,(0) is a monotone decreasing function of n.

It is intuitive to expect that longer lines will produce
longer waits, reducing customer satisfaction. Proposi-
tion 3 adds to this insight by showing that if customer
thresholds grow no faster than the length of the wait-

F (0) for M/M/1 System With X ~ H or X ~ GE and 0 = n = 100 at Various Levels of p.

[‘—‘— = %~ Utilization = 0.60 —— = = Ulilization = 0.70 = = = Ulilization:()‘ao\
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Figure 4

F (0) Vs. A for M/M/1 System With 6 = p = 100, Balking, and Reneging.
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ing line, then satisfaction rates decrease as the line
length grows. Further analysis of F,(0) also leads to
the following result.

ProPOSITION 4. For revealed M/M/1 systems with Y,
~ Exp(6/n%), 0 < a = 1 the percentage of satisfied cus-
tomers F(0) is a monotone increasing function of o and a
decreasing function of p.

Figure 5 illustrates this result. It plots F(0) values as
a function of utilization rates for the M/M/1 queue
when a = 0 or 1. It is apparent from the figure that the
gains from using a revealed queue grow with utiliza-

Figure 5

Lambda

tion up to a point where p values are very high. (In this
case, p > 0.95.)

4. Hidden and Revealed M/M/c
Queues

4,1. Hidden M/M/c Queue

Consider a single line M | M system with ¢ servers.
When customer thresholds are drawn out of an expo-
nential distribution with parameter 6, we can express
the PSC as follows:
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c-1 n )C
F0) =g, >, (cnp!) 9o (C(Ficl)! " _:;_ N where
(16)
Lo (o) 1 \]"
c c
v S (D) e

(Additional details are available in the Appendix.)

4.2. Revealed M/M/c Queue

When customer thresholds are drawn out of an expo-
nential distribution with its parameter 6., where n is
the length of the waiting line upon the customer ar-
rival, the conditional waiting time distribution can be
expressed as,

H,(x) = P{W = x|L = n}

culcpx)" ¢
[f(“—)emx = c

(n—o)! (18)
U(x) ifn<c

where U(x) is the step function defined in Table 1.
Using Lemma 1, we can easily calculate

CIJ’ n—c+1 ) -
F,(0) = (cwen) Hn=c g
1 ifn<c

Thus, when p = (A/cu), the percentage of satisfied
customers is

F(0) = > q.F.(0) = X, g,

n=0

+ %(

n—c+1
Py 671) , and

n=c¢

c—1 o -
(pc)n pncc CIJ“ n—c+1
F(0)=q0 2 n! +‘70 2 c! (CI-L+6n .

n=0 n=c
(20)
4.3. Revealed M/M/c Queue With Balking and

Reneging Customers
Analysis of the multi-server system with balking and
reneging customers is surprisingly similar to that of a
single server system because the transform of the
waiting time distribution has a very similar structure
(see Whitt 1999a). Specifically, we may state the L-S
transform of the waiting time as,

k
F,(0) = W,(s) = [] (m
]

j=0

(21)

In these equations, k indexes the position in the line
and c is the number of servers; therefore, n = ¢ + k.
We also note that the q values are modified to reflect
a multi-server system as follows,

5 b
Gn = GoA Hmfor0<n<c,q,,

i=1

-1
1 bi-i g bia

=a I TS

forc=n <, and g,

c—1 nb o c—lb o b -1
o gl
=\t EA l—lnp+n2A EnMIC_IC/.L+8

n=1 =1 =c

(22)

4.4. Observations on Hidden and Revealed

M/M/c Queues
For both hidden and revealed multi-server systems,
the following result may be stated.

ProrosrITION 5. For both the hidden and revealed M/M/c
models, the percentage of satisfied customers, F(0) is:

(i) a non-increasing, concave function of p (assuming A
or u is fixed);

(ii) a non-increasing, convex function of 6.

Figures 6 and 7 are illustrative of this result for
hidden M/M/ ¢ queues. Figure 6 shows that for a fixed
total system capacity (i.e. cu = a constant), the PSC
increases as the number of servers increases. This
strongly implies that designing a system with more,
but slower servers leads to higher levels of customer
satisfaction. Figure 7 shows that the PSC tends to
become less sensitive to a shifting of the mean of the
customers’ threshold distribution as the number of
slow servers is increased. This added benefit further
advocates the use of a multi-“slow”-server system
over a single "fast” server queue.

In Table 5, we report the percentage of satisfied
customers for a hidden M/M/c model with X ~ Exp
(6) and for a revealed M/M/c model with Y, ~ Exp
(6/n).

The table reports results for different levels of utiliza-
tion and for different numbers of servers ¢ (cu is constant
for all cases). From the results shown, we can infer that
revealed M/M/c queues tend to dominate M/M/1
queues in terms of the PSC. This result is entirely rea-
sonable given the observation that while the distribution
of the number of customers in the system is stochasti-
cally smaller in the single-server case, the reverse holds
for the number of customers in the queue (see Wolff
1989, p. 258). In other words, visitors to the revealed
single server queue are likely to see longer lines, and the
PSC decreases as a revealed queue gets longer.
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Figure 6

F (0) Vs. 0 for M/M/c System With p = 0.70 and Various Levels of c.
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A result analogous to Proposition 4 can be stated for
revealed M/M/c systems with Y, ~ Exp (8/n).

ProproSITION 7. For revealed M/M/c systems with Y,
~ Exp(6/n), the percentage of satisfied customers, F,(0) is
a monotone decreasing function of n.

The proof is omitted for brevity, but follows exactly
the same steps as the proof of Proposition 4.

5. Conclusions and Managerial
Insights

Our analysis and stated propositions lead to several
insights that should prove useful for the management
of waiting line systems.

InsiGHT 1. Reducing the psychological cost of waiting

promises great payoffs by increasing the percentage of sat-
isfied customers.

Figure 7 F (0) Vs. ¢ for M/M/c System at p = 0.70.
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Table 5

Percentage of Satisfied Customers of Hidden and Revealed M/M/c Models for Various Levels of System Utilization for Various Values of ¢

Hidden M/M/c with X ~ Exp(6)

Utilization p
Number of Servers ¢ 0.20 0.50 0.80 0.90 0.98
1 0.8889 0.6667 0.3333 0.1818 0.0392
3 0.9863 0.8421 0.4607 0.2572 0.0564
6 0.9997 0.9752 0.7646 0.5374 0.1561

Revealed M/M/c with ¥, ~ Exp(6/n)

Utilization p
Number of Servers ¢ 0.20 0.50 0.80 0.90 0.98
1 0.8976 0.7320 0.5090 0.3474 0.0943
3 0.9932 0.9223 0.7095 0.5161 0.1531
6 0.9997 0.9787 0.8064 0.5821 0.1661

* For all cases cp. = 100 and 6 = cp.
** The reported numbers are the percentage of satisfied customers R0).

If the service provider can alter customers’ thresh-
olds, then the firm is likely to produce a significant
increase in the number of satisfied customers. Qur
results also show that increasing the portion of the
population who don’t mind waiting significantly in-
creases values of F(0). The distribution of threshold
values may be affected by a variety of means includ-
ing providing information to reduce uncertainty, en-
tertaining customers, making them more comfortable,
or creating a greater sense of value for the end prod-
uct.

INsIGHT 2. For many systems, reductions in the vari-
ability of service times or in the variability of customer
thresholds have a lower than anticipated impact on the PSC.

This is not an argument that reduction in service
time variability is unimportant. However, our results
do imply that reducing variability is less significant
than intuition might suggest. Extremely impatient
customers are not likely to be satisfied with any no-
ticeable wait, and extremely patient customers are
easy to satisfy. Our analysis suggests that the greatest
impact arises from repositioning the threshold value
of the “average” customer.

InsiGuT 3. An analytical estimation metric for PSC is
critical for the management of many service delivery sys-
tems.

As mentioned in prior research, including Kleinfeld
(1988) managers routinely hear requests and advice to
spend more money and offer more service. Our ap-
proach presents an objective and measurable basis for
decisions regarding such policies. It is a simple matter
to review survey data before and after a change is
made to access its impact, but it is a far different
matter to offer rationally developed predictions about

satisfaction levels prior to a commitment to make such
changes. Our metric provides one approach to help
evaluate alternatives.

INsiGHT 4. Revealing information on waiting line
lengths may be beneficial for service systems if it alters
customer thresholds and lines are not likely to become very
long.

The impact of revealing queue length may be sig-
nificant if customers alter their thresholds in a manner
favorable to the firm. For cases in which p is low, such
shifts are of little consequence. On the other hand, if p
is moderately high; say between 60 and 85%, then
positive a values can provide a meaningful increase in
F(0). For systems with very high p values; say over
85%, the impact of customers raising their threshold
values in response to viewing the length of the line is
overwhelmed by the fact that the waits are very long.
Another impact of providing information about the
length of the queue is that some customers who would
have been dissatisfied with the wait may chose to balk
instead, perhaps to return during off-peak times. If
this occurs, then the total percentage of customers
who are satisfied actually rises.

INSIGHT 5. Assuming the same total system capacity,
multiple slow server configurations have higher proportions
of satisfied customers than do configurations with a single
fast server.

Significant improvements in customer satisfaction
occur when systems move from a single “fast” server
to two or three “slower” servers even if no decrease in
system utilization results. This occurs because a one-
to-one correspondence between line length and the
means of the distribution of threshold values results in
a scenario in which waits grow faster than customer
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patience when they view and wait in longer lines. The
result is that even though pooling results in less wait-
ing, it can also result in a lower PSC because custom-
ers are waiting in longer lines.

In summary, our approach emphasizes the fact that
the objective of increasing customer satisfaction can
profitably be approached by altering the service sys-
tem to “provide more service” or by altering the cus-
tomers’ attitude toward the waiting experience. We
have developed and presented a number of relatively
simple analytic models that managers can use to eval-
uate the impact of policies which change the service
delivery system or customer thresholds. These ideas
may prove quite useful in the design and management
of service delivery systems.

Appendix
Proof of Lemma 1.
” 0
PlI-]=0}= J Gy (y)0e™¥dy = 6 ¥= v(8).

0

F(0) for Hidden Queues:

For a stationary M/G/1 system, the inversion formula
of the Pollaczek-Khinchine (P-K) waiting time trans-
form is known. (See Kleinrock 1975, p. 201, equation
5.111.)

£

h(t) = > (1= p)p"r™(t)

n=0

(A1)

where r(t) is the stationary residual service time den-

sity given by
d 1
r(t) = T R(t) and R(t) = m (1-B@®) (A2)

and r™ represents the n-fold convolution of r with
itself. '

We can evaluate h(t) numerically by applying the
Laguerre transform to equations (A1) and (A2). For a
detailed reference on the use of Laguerre transforma-
tion, see Keilson and Nunn (1979). When the distribu-
tion function of X is Gamma, hyperexponential, folded
normal, their convolution, their mixture, or combina-
tion, it is convenient to evaluate the bilateral Laguerre
transform of W — X numerically to describe the distri-
bution of the random variable Z. For a detailed refer-
ence describing this approach, see Keilson, Nunn, and
Sumita (1981).

F(0) for Revealed Queues

Recall that Y, is the threshold value given that n
people are in the line when the new customer arrives.
We must consider the following distribution function:
F(x) = P{W — Y, = O[L = n}. In particular, we are

interested in calculating F (0), which represents the
probability that a customer arriving in the system
when there are n customers ahead of him/her will be
satisfied, i.e., W = Y,,. Since the randomness of Y,
arises from the heterogeneity of the customer popula-
tion, we assume that Y, and W are conditionally in-
dependent given L. Therefore, we fix Y, = 0.

Suppose that a customer observes n customers
ahead of him/her at the time of arrival. Because the
”Poisson arrival sees time averages” (Wolff 1982), the
residual service time of the customer being served, if
any, at a customer arrival epoch has the distribution
function R(t) given in (2). Thus, the distribution func-
tion of the waiting time given that an arriving cus-
tomer sees n customers in the system is

B DxR(x) n=1
U(x) n=0"
(A3)

H,(x)=P{W=x|L=n}= {

where B™ is n-fold convolution of B with itself,
* represents a convolution operation, and U(x) is the
step function previously defined.

When the distribution function of Y, is Gamma,
hyperexponential, folded normal, their convolution,
their mixture, or combination of those, the distribution
function H,(x) can be numerically evaluated using the
bilateral Laguerre transform (see Keilson, Nunn, and
Sumita 1981).

To complete the calculation of (5), we also need the
stationary queue length distribution (g,),-o of our
M/G/1 queue. Its calculation is based on the classical
Pollaczek-Khinchine queue length formula (see Klein-
rock 1975):

- 1-p)(1 -
Q(z) = X 4.2" = B(A = A2) (B(A—_p)iz)—_zz

(A4)

where B(s) is the L-S transform of B(x). Let us assume
that the service time distribution function has a ratio-
nal L-S transform. It is known that this class of distri-
bution functions is “dense” (Kingman 1966) in the
sense that every distribution function can be well ap-
proximated by a distribution function with rational
L-S transform. Therefore, our assumption does not
impose any serious restrictions in practice. In this case,
B(A — Az) = (N(z)/D(z)). We note that N(z) and D(z)
are both polynomials. From (A4) we obtain,

(1—-p)N(z)(1 —z)
N(z) — zD(z)

Q(z) = (A5)

To invert (A3), we apply a straightforward power
series expansion. Let

g0 = Q(0) and Qy(2) = Q(2)- (A6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Chambers and Kouvelis: Modeling and Managing the Percentage of Satisfied Customers in Hidden and Revealed Waiting Line Systems
Production and Operations Management 15(1), pp. 103-116, © 2006 Production and Operations Management Society 115

Given Q,(z) and g,,, let

Qn+l(z) = Qn(zi — A

Gne1 = Qn+l(0)
Then, the recursive formula (A7), with the initial con-

dition (A6) gives the series expression of (A4). From
the series expression and (5), we can evaluate F(x).

(A7)

F(0) with Balking and Reneging for M/M/1 Queues
The analysis of both hidden and revealed queues for
such settings is very similar, thus their treatment is
presented together here. Balking results in an effective
arrival rates that take into account customers who
abandon the queue before joining for any significant
length of time. We label this rate A, = Ab,, where 0 <
b, = by = 1. When the length of the queue is hidden,
we can assume that b; is a constant b for all i > 0 in
hidden queues. For M/M/1 systems, we know (see
Gross and Harris 1998, p. 94) that,

n Al_l <A>n n
n = - b,‘_ . A8
q 90 H " do m 1:1—[1 1 (A8)

For cases with reneging customers, we follow the ap-
proach in Gross and Harris (1998), p. 95, to devise q,
values where reneging rates (r(n)) are functions of n.
Combining the effects of balking and reneging on q,
we have,

! b;_
Gu = Go\" E ﬁTl(n) (n=1), and g,

. Lobig
=(1+ Z[AnHqur(n)}

n=1 i=1

-1

(A9)

We calculate the percentage of customers that balk as

B= 2 g.(1—b,).

n=1

(A10)

When customers renege at a constant rate, r(n) = 8,
this is equivalent to having customers leave the sys-
tem after exponentially distributed amounts of time
with rate 8. When a customer finds n = ¢ + k custom-
ers in the system, the delay can be represented as the
sum of k + 1 independent exponential random vari-
ables. Note that these variables are not identically
distributed unless & = u. Reneging occurs at some rate
8y for each position in the queue and other customers
leave the system after being served at some rate u. The
total reneging rate when there are k = n - ¢ customers

in the queue is §, = E};l 8. Thus, the waiting time
distribution is the sum of k + 1 independent exponen-
tial random variables with different means. The L-S

transform of this distribution can be written as

k+1
Wi (s) = [1 ( (A11)

j=0

For hidden systems when customers renege at a con-
stant rate, §; is independent of j, so we may drop the
subscript. For the case of a single server, application of
Lemma 1 implies,

- pté \"
F,(0) = W,(0) = (m) . (A12)

W.(8) given by (A11) states the percentage of cus-
tomers who enter a system containing n customers
and do not balk, nor renege. If we label the percentage
of arriving customers that do not balk or renege and
are satisfied as F’(0), we can now state that,

- + 8 \"
F)=3 qb<i—"+—zé/) F,(0). (A13)
n=0

We assume that customers who balk or renege are
not satisfied. We label the percentage of reneging cus-
tomers ®. We can now state ® and PSC = F(0) as,

O = E bn?n{l - Wn(S)}/ and

n=1

(Al14)

F(0O)=F'(0)(1 - B —®). (A15)

For additional details, see Rao (1968).

F(0) for Hidden M/M/c Queue
We know that F(0) = S524g,, + S g.(cie/ (cut+0)) ¢+,
Expansion and rearranging of terms yields, F(0)
= 2o /) + B oM/ el e/ (ept 0))E T
= g0 S52h (W) (U/nl) + go S, (0"c/c)ep/ (cp
+ 0))""°"1, where, p = (A/cp). Therefore, F(0) = g,
S57h (o) /) + go (o) /cl) (en/(cnt0)) S (p
(cp/(cp+0))". Simplification leads to F(0) = g, 254
((cp)"/nt) + gqo ((pc)°/cNem/ (cuut6))(cu+6)/ (cu+6—N).
Rearranging terms leads to the stated form.

Proof of Proposition 4. If this is true for @ = 1, it is
also true forall 0 < a < 1. Setting @ = 1, and 6, = 6/n,
then according to (10), we have

npw \"
F.(0) = (np, + 9) )

Then
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d€¢nF,(0) Green, L., P. Kolesar. 1987. On the validity and utility of queueing
€nF,(0) = n(dnnp — €n(np + 8)) — P ?225184% human service systems. Annals of Operations Research
" w dF,(0) Gross, D, C. M Harris. 1998. Fundamentals of queueing theory, 3rd
= ¥{nn = gn(n w+ 9)n<f — t) - edition. Wiley Inter-Science, New York, New York.
nu  (np+6) dn Hall, R. W. 1991. Queueing methods for services and manufacturing.
F,(0) Prentice Hall, Englewood Cliffs, New Jersey.
Inman, R. R. 1999. Empirical evaluation of exponential and inde-
pendent assumptions in queueing models of manufacturing
= €nnu — n(np + 0) + w—+(_)) systems. Production and Operations Management (4) 409-432.

Let E, = €nnu — €n(np + 6) + (6/(nu + 6)). Then

lim, o E, = —» and lim,,_,, E,, = 0. Since
dE, m I no
dn  np  (nu+0) (nu+ 6)>
p6?
np(np + 02 0.

E,, is a monotone increasing function and E, < 0 for all
n > 0. Thus,

dF,(0)
dn

<Qforalln>0.
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