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We consider the impact of variable production costs on competitive behavior in a duopoly where manufac-
turers compete on quality and price in a two-stage game. In the pricing stage, we make no assumptions

regarding these costs—other than that they are positive and increasing in quality—and no assumptions about
whether or not the market is covered. In the quality stage, we investigate a broad family of variable cost func-
tions and show how the shape of these functions impacts equilibrium product positions, profits, and market
coverage. We find that seemingly slight changes to the cost function’s curvature can produce dramatically dif-
ferent equilibrium outcomes, including the degree of quality differentiation, which competitor is more profitable
(the one offering higher or lower quality), and the nature of the market itself (covered or uncovered). Our model
helps to predict and explain the diversity of outcomes we see in practice—something the previous literature has
been unable to do.
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1. Introduction
Consumers encounter numerous occasions where they
must choose between competing products or services
based on their respective combination of quality and
price. Because the financial performance of the firm
hinges on the overall attractiveness of its offering,
companies invest considerable time and effort decid-
ing on the combination they believe will achieve their
goals in the marketplace. Insights into this problem
have often been obtained through economic models
of vertical product differentiation. In these models,
profit-maximizing firms compete on two dimensions:
product quality and product price. Most of these
models assume that variable costs are independent
of product quality and that market coverage (i.e.,
whether or not the whole market is served) is prede-
termined. The former assumption is troubling given
the number of real-world examples where higher
quality can only be obtained at significantly higher
variable cost. The latter assumption is problematic be-
cause it is impossible to guarantee that a preselected
market structure would logically result from profit-
maximizing competition without additional ad hoc
restrictions.
As a case in point, consider the “piano example”

introduced by Gabszewicz and Thisse (1979). In that

work, a customer considers the purchase of a sin-
gle piano from either manufacturer A or B, with A
offering the piano of higher quality. As Garvin (1990)
observes, this parallels the situation existing between
two major manufacturers of grand pianos, Steinway
and Yamaha. Steinway, which is perceived as the
high-quality producer, relies on a labor-intensive pro-
cess utilizing expensive, highly skilled craftsmen who
build each unit separately to strict material spec-
ifications. Yamaha uses a more automated process
involving less skilled labor, less stringent material
specifications, and fewer labor hours. Consequently,
the variable costs differ significantly, with Steinway
pianos being more expensive to produce. Neither
Steinway nor Yamaha can ignore the dependence of
variable costs on product quality when setting quality
levels and prices. Moreover, while it might be sensible
in the case of grand pianos to assume that the market
is uncovered, this assumption is not justified in other
situations.
To develop insights about the implications of the

cost-quality relationship, we develop and analyze a
simple vertical differentiation model of a duopoly.
Following Ronnen (1991), we use H to represent the
higher-quality provider and L to represent the lower-
quality provider. Their respective quality levels are
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denoted by qH and qL (with qL < qH ) and are selected
from some interval �0� qmax� (the quality domain or qual-
ity spectrum). The associated variable costs for qual-
ities qL and qH are cH and cL, respectively. We will
show that the equilibrium price for H equals the vari-
able cost of production plus a premium that increases
with the quality differential 	qH − qL
. Additionally,
we show that the equilibrium profit for H is precisely
	qH −qL
, which makes H ’s quality ambitions clear. If a
pure-strategy equilibrium (in qualities) exists, H pro-
vides a high-quality/high-price product appealing to
the most price insensitive segment of the market. In
contrast, L’s equilibrium price always equals cH , and
therefore L’s profit depends in large part on the dif-
ference in variable costs. Moreover, it is the quality
level offered by L that determines whether the mar-
ket is covered (all customers buy) or uncovered (some
customers do not buy).
For the case in which there is an industrywide

cost-quality curve obeying mild properties (described
in §4), we establish sufficient condition for the exis-
tence of a pure-strategy equilibrium in qualities. In
this equilibrium, H always takes the highest possi-
ble quality, whereas L takes a position that depends
on both the curvature of the variable cost function
(defined formally in §4) and the range of variable
costs. We find that increasing curvature pressures L to
increase quality. This seems intuitively clear because
increasing curvature of the variable cost function
means higher qualities are available at lower costs.
However the range of variable costs creates two types
of markets, and L’s response to increasing curvature
is different in each type. If the market is such that the
most price-sensitive customers are unwilling to pay
even the variable cost of production for the highest-
quality good, then L’s quality will converge to H ’s. In
this case, L will ultimately be more profitable than H ,
and the market will be uncovered. In contrast, if the
market is such that the most price-sensitive customers
are willing to pay at least the variable cost of produc-
tion for the highest-quality good, then L’s quality will
not converge to H ’s. In this case, there is a bound-
ary in the quality space (below H ’s position) that L
will not cross, even if the marginal cost of increas-
ing quality is negligible. This is because crossing the
boundary sets off a price war with H , and L is much
worse off for doing so. L therefore stops increasing
quality at the boundary, and the resulting market will
be covered. The profitability of the players depends
on the position of this boundary, which is related to
H ’s variable cost in an extremely simple way.
Our model therefore explains how simple proper-

ties of the variable cost function impact the configura-
tion of quality positions in an industry. We prove that
it is the cost function that (a) justifies the assumption
that there will be at least two profitable positions in

the market, (b) determines the separation in quality
levels, (c) determines which quality position is most
profitable, and (d) determines whether or not the mar-
ket is covered. We demonstrate that subtle changes
in the variable cost function can lead to very differ-
ent market outcomes, thus serving as a cautionary
tale about the robustness of results based on a narrow
functional form.

2. Literature
Researchers in the fields of economics and marketing
have investigated the manner in which products of
different quality levels compete in the marketplace. In
these works, the term “quality” refers to the level of
some attribute or some scalar metric representing a
vector of attributes (e.g., variety, functionality, reliabil-
ity, etc.). The defining characteristic of quality in these
treatments is that the marketplace consists of individ-
uals who all agree that a higher level is always prefer-
able to a lower level. For example, all other things
being equal, higher-octane gasoline is preferable to
lower-octane gasoline, more pixels are preferable to
fewer pixels in issues of visual resolution, and more
feedback from physicians is preferable to less feed-
back in health-care settings. Another interpretation of
“quality” would be a weighted score of the item based
on its attributes, such as Consumer Reports might pro-
vide. (See Tirole 1988 for an extended review.)
Mussa and Rosen (1978) consider a monopolist

choosing quality positions to serve a market of het-
erogeneous customers. This basic model is extended
to consider oligopolists competing on quality by
Gabszewicz and Thisse (1979), Tirole (1988), and
Donnenfeld and Weber (1992). Each of these works
assumes that variable production costs are indepen-
dent of product quality and that the market is cov-
ered, meaning that every potential customer receives
positive utility from the purchase of at least one prod-
uct offered. We relax these assumptions because of
the abundance of real-world examples where nei-
ther claim holds, such as luxury automobiles, grand
pianos, or plasma screen televisions.
The work of Moorthy (1988) has been particularly

influential in this area. He appears to be the first to
explicitly include variable costs in his framework by
assuming c	q
 = �q2, where q is product quality and
� is a positive constant. (Also, see extensions by Rhee
1996, Villas-Boas 1998, and Desai 2001.) Each of these
works assumes that the market is uncovered and that
variable costs are quadratic in product quality. We
assume that the market can be covered or uncov-
ered and that variable production costs are increas-
ing and convex in quality (as argued by Moorthy
1988). We note that our model leads to quite different
conclusions.
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The works of Ronnen (1991) and Lehmann-Grube
(1997) each assume that the market is uncovered. Ron-
nen (1991) ignores variable costs for the development
of his main results, but briefly discusses how its inclu-
sion affects his conclusion that increasing a minimum
quality standard results in reducing the ratio of price
to quality that the customers face in the marketplace.
Ronnen’s result stems largely from the fact that maxi-
mum differentiation is always optimal in his formula-
tion when no variable costs are present. Our work will
explain that maximal differentiation is often an irra-
tional response for the producer of the lower-quality
good. Lehmann-Grube (1997) ignores variable costs
but does consider “development costs” that increase
in quality but are sunk once production begins. The
inclusion of such an expense would have no impact
on most of our results (see Theorems 1–3).
The need to address this general problem with

fewer restrictive assumptions was noted by Wauthy
(1996). He appears to be the first to point out the siz-
able impact these assumptions have on the models’
results. In his words, “the transition from uncovered
market structures to covered ones is not smooth. The
nature of competition changes when the market is
covered. This is so because price competition becomes
a pure battle for market shares” (p. 352). Moreover,
he concludes that strategies deemed optimal under
one market coverage assumption could be subopti-
mal once this assumption is relaxed. We point out
that Wauthy made these observations while ignoring
the presence of production costs, but our work is able
to substantiate, clarify, and deepen them even in the
presence of such costs. Table 1 summarizes this and
other works.
In short, no previous analysis of this topic covers

as much ground as ours, primarily because all prior
works involve restrictive assumptions. Upon loosen-
ing these restrictions, we find that the results of prior
works are not robust in that they do not hold for a
more general setting. We proceed by characterizing
each player’s profit function, best-response function,
and the resulting price equilibrium in §3. We then

Table 1 Classification of the Vertical Differentiation Literature

Covered Uncovered Zero Quadratic
market market variable cost variable cost

Tirole (1988) � �

Gabszewicz and � �

Thisse (1979)
Moorthy (1988) � �

Donnenfeld and � �

Weber (1992)
Rhee (1996) � �

Ronnen (1991) � �

Lehmann-Grube � �

(1997)

investigate the existence and properties of the qual-
ity equilibrium in §4 assuming an industrywide cost
curve. We discuss our results and findings in §5.

3. Model Formulation and
Development

We consider a heterogeneous market served by two
producers whose products are differentiated by their
respective quality levels. We model competition via
a two-stage game. In the first stage, the producers
choose their quality levels; in the second stage, they
set prices. We ignore scale economies and assume that
variable production costs c	q
 are strictly increasing
in q. Each player has perfect information about his
rival. We also assume that all potential customers will
purchase at most one unit and have perfect infor-
mation about product qualities and prices. The prob-
lem is analyzed by deriving equilibrium prices (given
quality levels), then calculating equilibrium quality
levels for players, anticipating the subsequent price
competition.

3.1. Model Assumptions
Without loss of generality, we assume that the respec-
tive quality parameters associated with positions H
and L are qH and qL and satisfy qH > qL > 0. Because
there is typically an upper bound on quality due
to the laws of physics, the state of technology, or
the ability to improve the processes and procedures
that improve quality, we assume a maximum quality
level qmax.
The prior literature has established a number of

ways to calculate consumer surplus (or net utility)
for a heterogeneous market. For example, several
early works capture market heterogeneity using the
net utility function U	q�p��
 = �q − p, where � is
a taste parameter uniformly distributed on �a� b� (see
Moorthy 1988). Later works (e.g., Ronnen 1991 and
Lehmann-Grube 1997) normalize the problem so that
� ∈ �0�1�.
In our approach, we define surplus utility as

U	q�p� �
 = q − �p, where � is uniformly distributed
on �0�1�. We call � the price sensitivity parameter. With
respect to previous works, our utility specification is
equivalent to U	q�p��
 = �q − p if one assumes that
the taste parameter has the density f 	�
= 1/�2 for � ∈
�1��
. (See the online appendix on the Management
Science website at http://mansci.pubs.informs.org.
ecompanion.html for details.) Compared to the uni-
form distribution, this downward-sloping density
implies that the majority of buyers have lower reser-
vation prices and thus are more sensitive to price.
This would appear to be a more reasonable assump-
tion when considering discretionary purchases, such
as luxury cars, boats, and grand pianos.
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Our utility specification offers some unique advan-
tages regarding the study of market coverage. The
traditional specification U	q�p��
 = �q − p for � ∈
�0�1� implies that the market is uncovered for all vari-
able cost functions because a buyer with � = 0 will
not buy any product at any price. The specification
U	q�p� �
 = q − �p for � ∈ �0�1� does not imply that
the market is uncovered, as even the extreme-point
buyers find finite quality-price combination of posi-
tive utility. However, there are situations where the
market will be strictly uncovered due to the shape
of the variable cost function. For example, it is clear
that the market must be uncovered if q − 1 · c	q
 < 0
for all q (equivalently, the average variable cost sat-
isfies c	q
/q > 1 for all q
. This is equivalent to stat-
ing that there are some markets where the relative
price of quality rises so quickly that some customers
will never buy. This is a strong condition that does
not hold for many consumer goods and markets of
interest.

3.2. Pricing Behavior of Player H
In this section, we assume that qH > qL are given qual-
ity parameters, and we derive the best price response
function for H . For fixed values of qH , qL, pH , and
pL, customer utility U is a linear function of �. Given
two products (L and H ), each customer prefers the
product associated with the higher of these two linear
functions or the horizontal axis. The horizontal axis
represents the option of buying nothing, which we
label the null product. Consequently, there are three
situations that can occur. These are shown in Fig-
ures 1(a), (b), and (c).
These figures show that product H is preferred by

all customers with a � value between zero and some
upper bound. This upper bound is determined by
either the 0-quality/0-price null product (Figure 1(a)),
the product L (Figure 1(b)), or the market’s total size
	=1
 (Figure 1(c)). Thus, the market share for H is
min	qH/pH� 	qH − qL
/	pH − pL
�1
. We define cL as
c	qL
 and cH as c	qH
. Thus, we can write the profit
for H (given pL) as

�H =min
(

qH

pH

�
qH − qL

pH − pL

�1
)
	pH − cH
� (1)

Figure 1 suggests that a variety of quality-price
combinations could occur. However, an analysis of
(1) helps eliminate dominated price possibilities (all
proofs are included in the appendix unless otherwise
noted).

Proposition 1. Given qH > qL and price pL, the opti-
mal price response from H, pH = p∗

H	pL
, must satisfy
Condition 1. pH ≥ pL	qH/qL
.
Condition 2. pH ≥ pL + qH − qL.

Figure 1 Market Shares for H and L

U(b)

1

U(a)

1

qL

pL

U(c)

1

qH

qH

qL

qH

qL

qL

pL

qL

pH

qH

pH

qH

qH – qL

pH – pL

qH – qL
pH – pL

pL

qL
pH

qHqH – qL
pH – pL

θ

θ

θ

Condition 1 implies thatH will never price his prod-
uct so that UH	�
 = U	pH� qH��
 intersects UL	�
 =
U	pL� qL� �
 in the region U < 0, as in Figure 1(a). Con-
dition 2 implies that H will never price his product so
that the two functions intersect for � > 1, as in Figure
1(c). Consequently, the only possible situation is for
the functions to intersect when U ≥ 0 and � ∈ �0�1�. In
this case, the market share for H is 	qH − qL
/	pH − pL

as depicted in Figure 1(b). While we have implicitly
assumed that L is in the market, we will show shortly
that this is always the case.
We call a pair of prices feasible if Conditions 1 and 2

are met and both prices equal or exceed the respec-
tive product’s variable cost. The set of feasible prices
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Figure 2 Set of Feasible Prices
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for the situation where qL > cL is illustrated in Fig-
ure 2. Observe that Proposition 1 establishes a lower
bound on H ’s price response based on the lowest con-
ceivable price for L 	=cL
. This lower bound for H is
max	cH� cL + qH − qL� cL · qH/qL
, which we refer to as
H ’s price floor. We may assume that H always prices
at or above this floor.
The conclusion that Conditions 1 and 2 must hold

at equilibrium guarantees that the market share for H
is precisely 	qH − qL
/	pH − pL
. Thus, Equation (1)
simplifies to

�H =
(

qH − qL

pH − pL

)
	pH − cH
� (2)

We note that

��H

�pH

=
[

qH − qL

	pH − pL

2
	cH − pL


]
�

This term is strictly positive when pL < cH and nega-
tive when pL > cH . Thus, if pL < cH , then H should in-
crease his price. Conversely, if pL > cH , then H should
lower his price until reaching some lower bound, such
as his price floor. Using this insight, one can show
that the best response for H (see the appendix) is

RH	pL
≡




if pL < cH� pH =��

if pL > cH�

pH =max
(
pL

(
qH

qL

)
� pL + qH − qL

)
�

if pL = cH�

pH ≥max
(
cH + qH − qL� cH

qH

qL

)
�

(3)

Observe that when pL < cH , pH =�. The infinite price
is due to the existence of a completely price-insensi-
tive customer 	� = 0
. If we eliminate this possibility,
say by insisting � ∈ ���1� for some infinitesimal � >
0, then H simply employs a large but finite price.
Because this aspect of H ’s best response does not
affect the equilibrium prices, it suffices to treat the

infinite price as a symbolic response, e.g., “H sets a
very high price.” In either case, it is H ’s indifference
to competitors who price below cH that ensures L will
enter the marketplace. This line of reasoning is for-
mally stated in the following result.

Proposition 2. Given qH > 0, there exists qL > 0 such
that, if a price equilibrium exists, both H and L realize
positive market shares and receive positive profits.

Proposition 2 implies that at least two product posi-
tions are tenable because H will find it impossible to
cover the market with a single product, and he will
find it suboptimal to price his offering to exclude all
market share from L.

3.3. Pricing Behavior of Player L
The description of the best response for H is simpli-
fied by the fact that a customer with � = 0 always
prefers product H . Only the highest value of � for
which H is preferable is unknown. The situation for
L is more complex because both the lower and upper
bounds on the range of � values of customers who
prefer product L are setting specific. In the event that
the quality-price combination that L selects covers the
market 	qL −pL ≥ 0
, L’s market share is given by 	1−
	qH −qL
/	pH −pL

. On the other hand, if 	qL−pL < 0
,
L’s market share is 	qL/pL − 	qH − qL
/	pH − pL

. For
all feasible prices (given qualities), the profit for L is
therefore

�L =
{
min

(
1�

qL

pL

)
− qH − qL

pH − pL

}
	pL − cL
� (4)

If we knew a priori that �L would be maximized
by covering the market, then it can be shown (see
the appendix) that the optimal price for L would be
p#L	pH
= pH −√	pH − cL
	qH − qL
. This is possible only
if p#L	pH
 < qL. Conversely, if we knew that �L would
be maximized by not covering the market, then the
optimal price would be

p##L 	pH
 = pH ·

√
cLqL

	qH − qL
	pH − cL


1+
√

cLqL

	qH − qL
	pH − cL


�

This may occur only if p##L 	pH
 > qL. A detailed and
somewhat lengthy analysis of L’s price response leads
to the following response function (see the appendix
for complete derivation):

RL	pH
=




pL = p#L	pH
 if p#L	pH
 < qL�

pL = p##L 	pH
 if p##L 	pH
 > qL�

pL = qL otherwise�

(5)

One can show that p#L	pH
 > p##L 	pH
 and that both
p#L	pH
 and p##L 	pH
 are increasing functions of pH , pro-
vided H prices above his price floor and both players
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Figure 3 Best Responses
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have strictly increasing cost functions. Consequently,
RL	pH
 is well defined.
Figure 3 illustrates the best-response curves for the

case where qH = 10 and qL = 5. For this example, we
used the piecewise-linear, convex function c	q
= 0�2q
for 0 ≤ q ≤ 5 and c	q
 = q − 4 for 5 ≤ q ≤ 10. This
implies that cH = 6 and cL = 1. Because p#L and p##L
are increasing functions of pH , at most one of the
following conditions can hold for a given pH : either
(i) p#L < qL, (ii) p##L > qL, or (iii) p##L ≤ qL ≤ p#L. In the first
case, L’s best response is p#L, and the market is cov-
ered. This is illustrated by the portion of L’s response
curve lying in the region to the left of pL = qL = 5.
In the second case, L’s best response is p##L , and the
market is uncovered. This is illustrated by the portion
of L’s response curve lying in the region to the right
of pL = qL = 5. In the third case, L’s best response is
pL = qL. This is illustrated by the vertical segment of
L’s response curve that coincides with the line pL = 5.
The existence of this vertical segment implies that H
would have to significantly increase his price to moti-
vate L to raise his price above 5, which is the price
above which L leaves the market uncovered.

3.4. Price Equilibrium
In general, the intersection of the best-response func-
tions determines the Nash equilibrium in prices. The
intersection of the response functions (3) and (5) leads
to the following general result.

Theorem 1 (Price Equilibrium). Let qL and qH be
given quality levels satisfying qL < qH , and let the corre-

sponding variable costs be cL and cH with cL < cH . The
Nash equilibrium in prices is described as follows:
Case 1. If cH < qL, then

p∗
L = cH and

p∗
H =cH + 1

2 	qH −qL
+
√

1
4 	qH −qL


2+	cH −cL
	qH −qL
�

(6)
Case 2. If cH > qL, then

p∗
L = cH and

p∗
H = cH + 	qH − qL
	cH
2

2cLqL

+
√

	qH − qL

2	cH
4

4	cLqL

2

+ 	qH − qL
	cH
2

	cLqL

	cH − cL
�

(7)

Case 3. If cH = qL, then p∗
L = cH and p∗

H is any price
between those computed using (6) or (7).

Observe that in all cases, L’s best response to the
equilibrium price chosen by H is the variable cost
of H . H has numerous best responses for this price;
these are represented by the vertical segment extend-
ing up to infinity in Figure 3. However, the price that
drives L to his equilibrium price is determined by
either (6) or (7). For the example in Figure 3 (recall
that qL = 5, qH = 10, cL = 1, and cH = 6
, Theorem 1
implies p∗

L = 6 and p∗
H = $46�45. In this example, (7)

was used to determine the equilibrium price because
qL < cH . In other situations, (6) would be the appro-
priate formula. Straightforward algebra demonstrates
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that the equilibrium price for H set using (7) is sub-
stantially higher than that set using (6). Consequently,
there is a discontinuity in H ’s equilibrium price as
L’s quality level passes through the value cH . This
discontinuity is important in explaining the nature of
competition in this vertically differentiated duopoly.
To clarify the implications of this discontinuity, we

return to our previous numerical example and vary
L’s quality position while holding H ’s position fixed
at qH = 10 (this assumption holds for all subsequent
figures as well). We assume that equilibrium pricing is
used by both players, and we plot values of qL on the
horizontal axis and market share values on the ver-
tical axis. Figure 4(a) shows market share values for
three products; product L, product H , and the option
of buying nothing, which we label the “null product.”
If qL is close to 0, then H can offer his product at a

very high price, serve a small segment of the market,
and profit from the most price-insensitive customers.
In this case, most of the market buys nothing because
H ’s product is extremely expensive and L’s product is
“junk.” For example, if qL = 1, H ’s equilibrium price
is $1,632, L’s equilibrium price is $6, L serves 16% of
the market, while H serves only 0.55% of the market.
As qL increases, player L gains market share, and this
motivates H to drop his price. In the region between
qL = 0 and qL = 6, both players gain market share as
the portion of the market that is unserved shrinks. It
is important to note that the market share for H is
increasing in qL over this range. This occurs because
H has a great deal of room to drop his price, mak-
ing it more attractive to customers that would buy L
if H were to leave his price too high. For example,
when qL = 5, H ’s equilibrium price is only $46.45; L
serves 71% of the market, while H serves 12.4% of the
market.
When qL = cH , the market is covered, and the mar-

ket share for the null product is zero. From this point
onward, the only way for L to gain market share is
to take it from H . However, if L raises quality so that
qL > cH , H sets his price using (6) instead of (7). One
can think of the significantly lower price used by H as
a “price war” response to L’s quality ambitions. For
example, comparing a scenario with qL = 5�99 to one
with qL = 6�01, we see H ’s price drop from $21.20 to
$12.50. Note that this drop in price for H corresponds
to a jump in market share, from roughly 26% to 62%.
As qL rises above 6, the market share values become
stable as H drops his price almost linearly, approach-
ing a price of $6 at qL = 10.

3.5. Optimal Profits
The following result describes the profits for H as-
suming that H prices at or above his price floor.

Theorem 2. Let qL and qH be given quality levels with
qL < qH , and let the corresponding variable costs be cL

and cH with cL < cH . At the Nash equilibrium in prices,
we have

�∗
H = qH − qL� (8)

Note that Theorem 2 applies whether the market is
covered or not.
The situation for the lower-quality manufacturer is

more complex and involves two possibilities. If L can
and does cover the market, his profit is

�∗
L = 	cH − cL


{
−1+√1+ 4	cH − cL
/	qH − qL


1+√1+ 4	cH − cL
/	qH − qL


}
� (9)

In the region qL < cH , L chooses to leave the market
uncovered, and his profit is

�∗
L = 	cH − cL


{
qL

cH

− qL

cH

·
[

2cL/cH

1+√1+4cLqL	cH −cL
/�	cH
2	qH −qL
�

]}
� (10)

We observe that the first factor in (9) and (10) is L’s
profit margin (per unit). The rest is L’s market share.
We also observe that the profit function (10) is units
invariant with respect to costs. This implies that the
shape of the variable cost function is a primary driver
of profits.
Figure 4(b) plots the cost and profit functions for L

(using equilibrium prices) for the numerical exam-
ple described in Figure 4(a). Note that the profit-
maximizing position is the “elbow” of the cost curve.
When qL crosses the boundary at 6, we enter the
region where the market is covered. We see a discon-
tinuity in L’s profit function as we move from the
setting depicted in (9) to the one depicted in (10). This
is caused by H switching from (7) to (6) when setting
equilibrium prices.
While the concept of an elbow in the cost curve is

helpful in explaining some outcomes, it is not suffi-
cient in general. Consider the example shown in Fig-
ure 5(a). Here, L can increase product quality with
very little increase in production cost as long as qL

lies below 8. However, we see that L’s profit is actu-
ally maximized when qL = 4, which corresponds to
the production cost for player H . This implies that the
discontinuity in the profit function for L is another
likely candidate for L’s profit-maximizing position.
However, we point out that in many cases, neither
of these points (the elbow or the discontinuity) will
be optimal for L. For example, consider the setting
depicted in Figure 5(b). In this instance, L can increase
quality very inexpensively up to qL = 2�5, and the
market is not covered unless qL > 8, but the optimal
position lies in between these two points.
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Figure 4 (a) Market Shares for L, H, and Null Products; (b) Costs and
Profits for L as a Function of qL
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4. Production Costs and Quality
Equilibrium

We note that Theorems 1 and 2, along with the deriva-
tions of Equations (9) and (10), assume only that c	q

is nonnegative and nondecreasing in q. The applica-
tion of these results facilitates the determination of
the profit-maximizing position for players H and L
in the general case. However, if we can be more spe-
cific in the description of the problem setting, we can
develop additional, generalizable results.

4.1. Definitions
If each player has a different cost function, then the
equilibrium quality levels (if they exist) are problem
specific. Because our goal is to derive generalizable
results, we now consider, consistent with previous lit-
erature, cases in which the industry is characterized
by a single variable cost function, and some basic
properties of that cost function are known. We label
the class of functions that we consider �, and list its
properties below.
Definition. � is the class of variable cost functions

having the following properties:
Property 1. c	0
= 0.
Property 2. c	q
 is strictly increasing and twice dif-

ferentiable on �0� qmax�.
Property 3. c	q
 is convex on �0� qmax�.

Figure 5 (a) Costs and Profits for L as a Function of qL; (b) Costs and
Profits for L as a Function of qL
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Property 4. The average variable cost function
c	q
/q is convex and log-concave on �0� qmax�.
These four properties are satisfied by all of the vari-

able cost functions used in the literature thus far (con-
stant, linear, or quadratic). However, � also includes
all functions of the form c	q
= �qre�q for � > 0, �≥ 0,
r ∈  1� �2��
!1 as well as polynomials of the form
c	q
 = �q · ∏n

i=1	�i + q
 with �i > 0. This represents
a broad cross section of convex increasing shapes.
Moreover, it is straightforward to show that � is
closed under multiplication.
All of our previous examples reflect functions that

satisfy Properties 1–3. Property 4 is slightly more
restrictive. A log-concave function f has the prop-
erty that f ′/f is nonincreasing, which implies that the
derivative cannot change more rapidly than f . Thus,
Property 4 forces the average variable cost function
(and by extension the variable cost function) to exhibit
a certain level of smoothness, even if c	q
 is rising
rapidly.
We used piecewise-linear functions in our earlier

examples to make the idea of an elbow clear. In these

1 A somewhat larger class of functions includes the powers 1< r < 2
and ensures that all of our subsequent results hold. (See Chambers
et al. 2004.) This class is more difficult to describe and thus is not
presented here.
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cases, the elbow is the point of maximum curvature.
While Property 4 eliminates piecewise-linear func-
tions, each of the variable cost functions used in our
previous examples can be well approximated using
functions in �. Thus, we would like to generalize the
notion of an elbow for functions within �. To do this,
we need a formal definition of curvature that consid-
ers the entire quality spectrum.
Definition. Suppose that c	q
 is a nonnegative,

strictly increasing, convex function. Without loss of
generality, suppose that c	0
= 0. The curvature of c	q

over �0� qmax�, denoted by K�0� qmax�	c	q

, is

K�0� qmax�	c	q

= max
q∈�0� qmax�

q

qmax
− c	q


c	qmax

� (11)

The expression q/qmax − c	q
/c	qmax
 measures the
difference between c	q
 and the secant line passing
through 	0�0
 and 	qmax� cmax
, expressed as a fraction
of cmax. Consequently, K�0� qmax�	c	q

 is units invariant
and 0 ≤ K�0� qmax�	c	q

 < 1. Observe that the value of
q that optimizes (11) is identical to the elbow in Fig-
ures 4(a), 5(a), and 5(b).

4.2. Structural Results
We can use the definitions stated in §4.1 to prove
some fairly general results regarding L’s quality posi-
tion relative to H , including the following.

Theorem 3. Suppose that c	q
 ∈ �. For qL ∈ �0� qH�,
L obtains higher profits by selecting quality positions that
satisfy qL ≤ cH .

Observe that because L’s equilibrium price is p∗
L =

cH , markets where qL ≤ cH are uncovered unless L
takes the position qL = cH . Thus, Theorem 3 only
allows L to cover the market in a minimal sense, i.e.,
such that the most price-sensitive buyer has zero net
utility. This is due to the price war response (6) of
H . The significance of Theorem 3 is that as long we
know that the cost function is in �, we may ignore
Equation (9). This simplifies the development of addi-
tional results and leaves the possibility that all cus-
tomers may still be served if L selects qL = cH . Given
Theorem 3, we can safely state that L’s best quality
response to H is determined by solving the following
mathematical program:

max
qL≥0

�L = 	cH − c	qL



(
qL

cH

)[
1− 2c	qL


cH

·
(
1+

√
1+ 4qL · c	qL


	cH
2
· 	cH − c	qL



	qH − qL


)−1]
(12)

s.t. qL ≤ qH�

qL ≤ cH �

Note that we can define cH = c	qH
 and cL = c	qL
,
and that the functional form of (12) ensures that
min	cH� qH
 provides an upper bound on the optimal
value of qL.
To guarantee that the proposed equilibrium is

unique, we need to show that qH = qmax is optimal
for H when he is not limited to positions above qL. In
many settings, it is simply impractical for firm H to
take a position below that of firm L due to the differ-
ences in managerial styles, production systems, and
the firms’ competencies. However, in other settings
such behavior may be feasible. To understand when
this might occur, we need to compare profits for H
over two regions: the regions above and below L’s
position. This is especially difficult because no closed-
form expression for the optimal solution to (12) exists
for the general case. However, our definition of cur-
vature will prove useful in understanding the basic
problem.
To make some general claims, we first need to

determine an upper bound on L’s position. This can
be accomplished by decomposing L’s profit function
into the product of two functions, f 	qL
 and g	qL
,
where

f 	qL
= 	cmax− c	qL



(
qL

cmax

)
and

g	qL
= 1− 2c	qL
/cmax

1+
√
1+ 4qLc	qL


c2max
· cmax− c	qL


qmax− qL

� (13)

If c	q
 is convex, then f 	qL
 is concave. We observe
that the point maximizing f 	qL
 is the same point
that defines the curvature (the “elbow”) of qc	q
 over
the interval �0� qmax�. Because this point is of spe-
cial importance in our subsequent developments, we
denote it by q∗

K , i.e.,

q∗
K = argmax

0≤q≤qmax

(
q

qmax
− qc	q


qmaxc	qmax


)
� (14)

We can now derive upper bounds on L’s optimal
response along with sufficient conditions that ensure
the existence of a pure-strategy equilibrium.

Theorem 4. Given c ∈� and 0< qmax <�,
(a) The solution to (12) satisfies q∗

L ≤ q∗
K , and the equi-

librium profit for H is bounded below by qmax− q∗
K .

(b) If qmax − q∗
K > c	q∗

K
, then the only pure-strategy
equilibrium is given by taking qH = qmax and qL = q∗

L,
where q∗

L solves (12).
(c) If qc′	q
/c	q
 is nondecreasing on 	0� qmax� and

qmax− q∗
K > q∗

KK�0� qmax�	qc	q

, then the only pure-strategy
equilibrium is given by taking qH = qmax and qL = q∗

L,
where q∗

L solves (12).
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We remark that Property 4 implies that g	qL
 as
defined in (13) is nonincreasing on �0� qmax�, which,
in turn, implies that the solution to (12) satisfies the
upper bound q∗

L ≤ q∗
K stated in part (a). This, in turn,

establishes a lower bound of qmax − q∗
K for the profit

of H on the region above L. Part (b) insists that the
lower bound for H ’s profit in the region above L
exceeds the upper bound 	=c	q∗

K

 on H ’s profit in
the region below L. When this condition is satisfied,
a pure equilibrium exists (and it is given by q∗

H = qmax
and qL = q∗

L). However, the conditions for (b) are not
scale invariant with respect to cost. Part (c) provides a
second set of sufficient conditions that is scale invari-
ant with respect to costs. The same type of profit com-
parison used in (b) is done in part (c), except this
time the upper bound on H ’s profit in the region
below L is q∗

KK�0� qmax�	q · c	q

. The additional assump-
tion on qc′	q
/c	q
 is needed to ensure that K�0� qH �	q ·
c	q

 is a nondecreasing function of qH , which implies
K�0� qmax�	q · c	q

 ≥ K�0� q∗L�	q · c	q

. This simplifies the
upper bound on H ’s profit in the region below L. The
nondecreasing assumption on qc′	q
/c	q
 is not partic-
ularly onerous; it holds for all of the functional forms
discussed for � in §4.1.
Observe that Theorem 4 does not say anything

about a lower bound for L’s position in the pure-strat-
egy equilibrium. To derive a lower bound, we again
take qH = qmax. If cmax ≥ qmax, then the market is nec-
essarily uncovered. One may then insert the value q∗

K

from (14) into (10) to obtain a lower bound on L’s
optimal profit, �∗

L . It can then be shown that

�∗
L >

q2max
q∗
K

[
K�0� qmax�	q · c	q



]2
> qmax

[
K�0� qmax�	q · c	q



]2
�

We also observe from (10) that �L	qL
 < qL, from which
it follows that

q∗
L > qmax

[
K�0� qmax�	q · c	q



]2
� (15)

This implies that increasing the curvature of c	q

eventually pressures L to increase quality.
In the case where cmax < qmax, L could conceiv-

ably cover the market. Inserting qL = cmax into (10)
and again using the inequality �L	qL
 < qL yields the
inequality

q∗
L > �∗

L >

(
1− c	cmax


cmax

)2
cmax� (16)

Because increasing the curvature of c	q
 drives the
term c	cmax
 to zero, (16) implies that L would eventu-
ally be pressured to raise quality up to cmax. When this
occurs, the market is covered and H will chose a point
above qL because the profit available to H by choos-
ing a point below L is bounded by c	cmax
 (see (12)),
whereas the profit available to H by staying at qmax

Figure 6 (a) Costs and Profits for L as a Function of qL; (b) Costs and
Profits for L as a Function of qL
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is bounded below by qmax− cmax. For sufficiently high
curvature, c	cmax
 < qmax− cmax.

4.3. Curvature and Profitability
To make the curvature-profitability connection con-
crete, we consider two related examples, each com-
paring two cost functions with q ∈ �0�10�. In
Figure 6(a), we consider a linear cost function 	c	q
=
0�4q
 versus the function c	q
 = 1 · 10−5q3e0�6q . Both
functions are members of �, but the latter approx-
imates the cost function in Figure 5(a) and exhibits
significantly greater curvature than the linear func-
tion. The pure quality equilibrium is q∗

H = 10 (for both
cases), while q∗

L = 3�75 with the linear cost function
and q∗

L = 4 given the convex cost function. Observe
that in this example, cmax = 4 plays a critical role
in constraining L’s quality level and neutralizing the
effects of curvature. This protects H ’s high-quality
position and ensures that H has superior profits (6.25
for linear costs, 6.00 for convex costs). Nevertheless,
higher curvature is still better for L ceteris paribus.
For linear costs (no curvature), L’s profit is 1.56; for
convex costs (greater curvature), L’s profit rises to 4.0.
Note that the market is covered given convex costs,
whereas it is uncovered for linear costs.
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Figure 6(b) compares results when 	c	q
 = 0�8q

or c	q
 = 2 · 10−5q3e0�6q and cmax = 8. Note that the
curvature is unchanged because each cost function
is simply multiplied by two. However, lifting the
maximum cost to eight (increasing the range of c	q


allows the impact of curvature to be more fully real-
ized. Comparing the case with linear costs to the
case with convex costs, we see that L’s equilibrium
profit increases from 1.5625 to 6.3, while H ’s profit
drops from 6.25 to 2.75. Thus, the effect of increas-
ing curvature and increasing c	q
’s range has made
L the more profitable position. In doing so, the mar-
ket has become uncovered for both linear costs and
convex costs. We also note that at least one of the
two sufficient conditions in parts (b) and (c) of Theo-
rem 4 holds for each cost function used in Figures 6(a)
and 6(b).

5. Summary and Conclusions
We have investigated a duopoly where competitors
compete on quality and price in a two-stage game.
The analysis of this game has led us to several obser-
vations. First, we observe that given quality levels
qL < qH , there exist equilibrium prices that allow both
positions to profitably coexist. These results do not
require any assumption other than that the lower-
quality product costs less to produce than the higher-
quality product cL < cH . Moreover, we find that the
equilibrium price for L always equals the variable
production cost for H . The equilibrium price for H
equals the variable production cost for H plus a pre-
mium that depends on the separation in quality. This
premium follows different formulas depending on
whether L covers the market or not. This leads to a
discontinuity in equilibrium prices and profits. Under

Figure 7 Quality Positions in the Piano Example
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loose conditions detailed in Theorem 3, L will never
attempt to strictly cover the market.
Additionally, we find that both high- and low-qual-

ity positions benefit from product differentiation, but
in different ways. The high-quality position benefits
because H ’s profits are completely determined by the
separation in quality. Consequently, H always takes
the highest possible quality position. The low-quality
position benefits because L’s profits are primarily
driven by the separation in variable costs. Variable
cost functions exhibiting low curvature keep competi-
tors’ qualities far apart. As curvature increases, L can
(and will) increase quality while maintaining the cost
differential, thus gaining market share and improv-
ing profits. If the market is such that the most price-
sensitive customer is willing to pay the variable cost
of production for the highest-quality product, then
rising curvature allows L to increase quality until the
market is covered. In this case, the competitors’ qual-
ity levels cannot converge, and the impact to H ’s prof-
its may be small. On the other hand, if this is not the
case, then the market is necessarily uncovered and ris-
ing curvature allows L to box H into a quality corner.
This implies that their quality positions converge and
H ’s profits are dramatically reduced.
There is some anecdotal evidence to support this

description. For instance, returning to our grand
piano example, we notice that Yamaha prices its units
significantly below the prices for comparably sized
Steinways. Yamaha’s pricing and reputation for qual-
ity suggests that relatively high-quality levels are pos-
sible at relatively low production costs. (See Gourville
and Lassiter 1999 for supporting price and production
information.) On the other hand, Steinway achieves
the industry’s highest-quality levels for its grand
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pianos by incurring higher labor and material costs
(e.g., Steinway reports that it must discard half of
the wood it purchases for their units because after an
extensive curing period, the wood’s density is unsuit-
able for further use).
These facts collectively suggest that there is signifi-

cant curvature in the variable cost curve, as shown in
Figure 7. Given such a relationship, our model sug-
gests that the products for players L and H would
be approximately positioned as shown in the figure.
In this market, our model predicts that L (Yamaha)
should be more profitable than H (Steinway) because
of its larger market share and significant variable cost
differential. This prediction is consistent with indus-
try information. For example Gourville and Lassiter
(1999) report that in 1994, Steinway delivered roughly
2,700 grand pianos, while Yamaha delivered roughly
20,000.
On the other hand, if we restrict attention to the

market for concert grand pianos, the situation is
quite different. For this market segment, Gourville
and Lassiter (1999, p. 4) report that Yamaha mim-
ics Steinway’s design and production techniques.
The variable cost curve should exhibit less curvature
because the production technology is roughly propor-
tional to the labor required (i.e., linear variable costs).
This situation is better represented by the rectangu-
lar box in Figure 7. Here, our model predicts that H
will be more profitable. Industry analysts indicate that
Steinway holds this position and is clearly the most
profitable in this space because over 90% of all clas-
sical music concerts featuring a piano soloist utilize a
Steinway concert grand piano.
In either market, our model offers a reasonable

explanation for the relative advantages and disadvan-

tages of different quality positions as consequences of
the variable cost of quality.
An online supplement to this paper is available on

the Management Science website (http://mansci.pubs.
informs.org/ecompanion.html).
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